Social Acceptance of Humanoid Robots

Tatsuya Nomura
Department of Media Informatics,
Ryukoku University, Japan
nomura@rins.ryukoku.ac.jp
Contents

- Acceptance of Humanoid Robots
 - Technology Acceptance Model (TAM)
 - Limitation of TAM
- Influence of Culture
 - International comparison on assumptions about humanoid robots
 - Japan-UK comparison on opinions about humanoid robots
- Age effects on acceptance of humanoid robots
 - Interaction between age and experience
Acceptance of a Specific Technology within Society

- An important research subject to be tackled by:
 - Social sciences
 - Technological fields (application design)
- Social acceptance of humanoid robots
 - How the general public will accept this technology in their daily life
 - What factors prevent such acceptance of humanoid robots
Technology Acceptance Model (TAM)

- Psychological model of user acceptance of new technologies (Davis, 1989)
 - Prediction by “perceived usefulness” and “easy of use”
- Applications in acceptance of social robots
 - Addition of “perceived enjoyment”, “social presence”, and “perceived sociability” (Heerink, et al., 2008)
 - More unified model (Shin & Choo, 2011)
Limitation of TAM

- Criticism toward its user-centered approach (Salvini, et al., 2010)
 - Focus on users’ cognition and perception
 - Lack of social levels (organizational, legal, socio-ethical levels)
- Properties specific to humanoid robots
 - Cultural differences (Frankenstein syndrome (Rollin, 1995))
- Interaction effects
 - Between age, gender, culture, experience
Needs of Survey Research on Humanoid Robots

* Investigation of general republic’s expectation and anxiety toward humanoid robots before their widespread
 * Clarification of differences between humanoids and other types of robots
 * Exploration of personal and social factors influencing the acceptance (specific to humanoids)
 * Verification of interaction effects between these factors
Existing Survey-based Studies

- Scopelliti, et al. (2005):
 - Age effect on acceptance of domestic robots
 - (not specific to humanoids)
- Oestreicherer & Eklundh (2006):
 - Task types expected of domestic household robots
- Kamide, et al. (2012)
 - Human perception of humanoids including acceptance (age effects)
Influences of Cultures

* A popular notion: “The Japanese people more prefer to robots than those in the other nations”

* Consideration about its cause
 * Influence of Confucianism (Yamamoto, 1983)
 * Epistemological difference on relationships between technologies and the nature (Kaplan, 2004)
Cultural Differences on Attitudes toward Robots

- Comparison on attitudes toward AIBO between nations including Japan, UK (Bartneck et al., 2007)
- Comparison on explicit and implicit attitudes toward robots between Japan and the USA (MacDorman et al., 2009)
 - Explicit measure: Japan > the USA
 - Implicit measure: no difference
- (not focusing on humanoid robots)
International Comparison on Assumptions about Humanoid Robots

* A survey for university students in Japan, Korea, and the USA (Nomura et al., 2008)
 * Focus on assumptions about functions, tasks, and images of robots when people hear the word “robots”
 * Comparison with “pet-type robots”
 * Autonomy, relationships with humans, functions of emotions for humanoid and pet-type robots
 * Expected tasks
 * Images such as social influences
Assumption about autonomy

JH: humanoid for Japanese
JA: pet-type for Japanese
KH: humanoid for Korean
KA: pet-type for Korean
UH: humanoid for USA
UA: pet-type for USA

A1: completely autonomous
A2: partly autonomous
A3: no autonomy
Assumption about Relationships with humans

JH: humanoid for Japanese
JA: pet-type for Japanese
KH: humanoid for Korean
KA: pet-type for Korean
UH: humanoid for USA
UA: pet-type for USA

S1: equal to humans
S2: equal to pet animals
S3: equal to tools
Assumption about Functions of Emotions

JH: humanoid for Japanese
JA: pet-type for Japanese
KH: humanoid for Korean
KA: pet-type for Korean
UH: humanoid for USA
UA: pet-type for USA

E1: equal to humans
E2: partly
E3: no emotion
Differences on Assumptions about Tasks and Images

- Assumptions about tasks related to life-and-death situations such as hospitals:
 - Korean students > Japanese students

- Assumptions about tasks related to social works and education:
 - Japanese students > Korean students

- USA students: both interests and caution for the technology

- On the item “A blasphemous of nature”:
 - USA students < Japanese and Korean students
 - Korean and USA: both positive and negative
 - Japanese: ambiguous
 - Not consistent with the popular notion on preference of robots in Japan
Comparison between Japan and the UK

* Verification of “Frankenstein syndrome” (Syrdal, et al., 2011)
 * Extraction of opinions about humanoid robots from an open-ended questionnaire
 * About widespread of humanoid robots in society
 * Sorts of activities humanoid robots should/should not perform in society,
 * Sources of impressions of humanoid robots
 * Respondents: general adults
On Positive Sentiments toward Humanoid Robots

UK (N = 100)

- No Positive: 27%
- Expectation of specific benefits, future possibilities: 46%
- Other, including general positive sentiment: 27%

Japan (N = 201)

- No Positive: 12%
- Expectation of specific benefits, future possibilities: 47%
- Other, including general positive sentiment: 41%

$\chi^2(2) = 19.54$
$P < .001$
On Negative Sentiments toward Humanoid Robots

No negative sentiment

Laziness, unemployment, meaning of humanity

Others, including physical risks and maintenance costs

\[\chi^2(2) = 27.55, \quad P < .001 \]

UK (\(N = 100\))

Japan (\(N = 201\))
On Types of Tasks Humanoid Robots Should not Perform

- Caring, emotional support, decision making, education, medicine.
- Other, including anti-social behavior and military robotics

\[\chi^2(2) = 18.56, \quad P < .001 \]

UK (\(N = 106 \))

Japan (\(N = 98 \))
Age Effect on Acceptance of Humanoid Robots

* Suggestion from the existing studies:
 * Younger people more preferred to robots than elder people in these studies
 * In other countries

* Possibility of the opposite trend in Japan
Age Difference on Robots in Japan

- Survey for visitors of a robot exhibition (Nomura et al., 2007)
 - 40’s: more positive than 20’s
- Survey for visitors of an event about robots held in a shopping facility (Nomura et al., 2009)
 - Adults (26〜50):
 - Prediction: communication robots
 - Expectation: non-communication robots
 - Elderly (more than 51)
 - Both communication and non-communication robots in both prediction and expectation
Development of Frankenstein Syndrome Questionnaire

* A measurement tool to investigate social acceptance of humanoid robots (Nomura, et al., 2012)
 * General anxiety, anxiety toward social risks, trustworthiness for developers, and expectation in daily life
 * Exploration of effects of age, culture, experiences

* Current stage:
 * A pilot test in Japan ($N = 1000$)
Influences of age and experience

* Experience of humanoid robots in real situations or through media information:
 * Positive influences on trustworthiness for developers and expectation in daily life

* Age:
 * Elder population -> increased trustworthiness for developers and expectation in daily life
Interaction between Age and Experience (1)

General anxiety toward humanoids

- **Exp**: respondents who had seen real humanoid robots, or seen humanoid robots via media
- **Nexp**: respondents who had never seen humanoid robots

Exp: 20's > 50's, 60's; 30's > 50's
30's, 50's, 60's: Exp < Nexp
Interaction between Age and Experience (2)

Anxiety toward social risks of humanoids

Exp: 40's > 60's
20's, 30's, 40's: Exp > Nexp

A trend opposite to general anxiety
Future Direction of the Research

- Investigation of interaction effects between age, experience, and culture
 - Another pilot, and main tests of Frankenstein Syndrome Questionnaire
- Exploration of essential factors in age and cultural differences
 - Educational systems, religious beliefs, mass-media
- Unification of TAM
Acknowledgment

* The research was supported in part by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research No. 21118006.
References

